MCC Sideflexing Belts Engineering

Sideflexing Belts

Basic design considerations

Side flexing configuration

When planning the side-flexing conveyor layout, the designer must consider the following factors that affect chain life:

- Minimize the number of corners in each conveyor whenever possible
- When conveying from point A to point B, design the conveyors so that the last curve is positioned furthest from the last drive (see drawing), resulting in lower chain tension and maximizing chain life

Preferred

Avoid

End drive construction

These conveyors have the drivemotor and sprocket at the end of the conveyor.

C should be 150-250mm

Centre-drive conveyor

Wrap around angle

Recommended wrap angle on sprockets is: 140º +/- 10º.

When the wrap angle is too small, the sprocket will not be able to transfer the load to the chain anymore causing the chain/belt to jump on the sprockets. When the wrap angle is too big, the chain/belt can stick to the sprocket.

MCC Sideflexing **Belts** Engineering

Basic design considerations

Side flexing configuation

End drive construction

Centre drive conveyor

Wrap around angle

MCC Sideflexing belts Engineering

Catenary sag

End drive with

Centre drive with

tensioner

tensioner

Sideflexing Belts

Catenary sag

It is recommended to create a catenary sag which provides a complete discharge of the beltload.

The right vertical catenary sag can usually be obtained automatically by just pulling both ends of the belt together and connecting them. The catenary sag will increase due to elevated temperatures. Furthermore, the belt can elongate due to strain and wear of the pins and hinge eyes. Therefore it is important to check and adjust the catenary regularly.

End drive with tensioner

Centre drive with tensioner

A tensioner construction is only necessary if the conveyor design does not allow for a proper catenary sag due to lack of space. A tensioner can also be used with declined conveyors, but in all other cases it is not recommend to tension the chain/belt.

NOTE: The tensioner roller/sprocket can be fixed on an arm or move up and down in slots in the conveyor sideplates.

Sideflexing Belts

Roller diameter for sideflexing belts

Belttype	505- series	1255- series	1265- series	1275- series	1285- series
		All dir	nensions	in mm	
	>30	>60	>70	>60	>70
Return rollers	60-100	60-100	60-100	60-100	60-100
- Backflex rollers -	> 30	> 80	> 80	> 80	> 80

The recommended roller diameters in the table are an indication. The width of the conveyor is not taken into account. The diameter of the shaft should be large enough to avoid excessive deflection of the roller. At the same time it is recommended not to exceed the maximum diameter, because the roller friction may be too heavy to be set in motion by the belt.

Position sprocket - wearstrips

When the belts enter the sprocket, it tend to raise and fall slightly (chordal action). For this reason the sprockets should be mounted in such a way that their highest point is no higher than the top of the wearstrips. The front edges of the wearstrips should be bevelled to allow smooth and free running of the chain. The distance from the end of the wearstrip to the sprocket shaft centerline should equal dimension L, otherwise the wearstrip will interfere with the free articulation of the chain as it enters the sprockets.

Belt type	Drive sprocket	L mm	Idler roller H (mm)	L
2011.900	H (mm)			mm
505-series	<u>Dp</u> 2 -6.35	12.7	<u>Dp</u> 2	12.7
1255-series	<u>Dp</u> 2 -6.35	32.0	<u>Dp</u> 2	32.0
1265-series	<u>Dp</u> 2 -6.35	32.0	<u>Dp</u> 2	32.0
1275-series	<u>Dp</u> 2 -6.35	32.0	<u>Dp</u> 2	32.0
1285-series	<u>Dp</u> 2 -6.35	32.0	<u>Dp</u> 2	32.0

MCC Sideflexing Belts Engineering

Roller diameter for sideflexing belts

Position Sprocket - wearstrip

MCC Sideflexing belts Engineering

Keyway dimensionens of MCC sprockets

> Wearstrip materials

Recommended wearstrip materials

Belt return

Sideflexing Belts

Keyway dimensions of MCC sprockets

d1 (mm)	b (mm)	t (mm)
25mm	8	28.3
30mm	8	33.3
35mm	10	38.3
40mm	12	43.3
45mm	14	48.8
50mm	14	53.8
60mm	18	64.4

d1 (inch)	b (inch)	t (inch)
1"	1/4	1 1/8
1 1/4"	1/4	1 3/8
1 1/2"	3/8	1 9/16
1 3/4"	3/8	1 15/16
2"	1/2	2 1/4

m Wearstrip materials

Stainless steel wearstrips

Can be used in most situations using plastic belts and are strongly recommended in abrasive environments.

- Recommended for abrasive conditions due to avoiding of dirt embedding in the wearstrips;
- Recommended for plastic chains/belts in dry environments with speeds > 60m/min;
- Cold rolled stainless steel with a hardness of at least 25 Rc and a surface finish of maximum 1.6 µm is recommended;
- Best results can be achieved by using stainless steel AISI 431 (Werkstoff-Nr. 1.4057 material; soft AISI 304 (Werkstoff-Nr. 1.4301) is not recommended as wearstrip material.

UHMPWE wearstrips

Friction is low compared to steel wearstrips. Two types of plastic are suitable to be used as a wearstrip material.

- Most common used wearstrip material with extreme low friction;
- Excellent resistance against many chemicals;
- Virtually no moisture absorption, therefore very suitable for lubricated lines;
- Good dimension stability;
- Reduces some of the noise conveyors produce;
- Suitable for dry running conveyors with speeds up to 60 m/min;
- Extruded quality 1000 grade UHMWPE is recommended.

Recommended wearstrip materials

Wearstrip material		Plastic modular belts		
		Dry	Lubr.	
UHM	WPE	+	+	
Polya	imide	+/-	-	
Stain	less steel	+	+	
+	Recommended			
+/-	Satisfactory			

- +/- Satisfactory
- Not recommended
- ¹⁾ Up to 60 m/min in non abrasive conditions
- ²⁾ Only in non abrasive conditions

Belt return

For sideflexing belts we recommend to use rotating rollers for the returnpart.Reduced wear.

Simple construction. Good accessibility

- Only point contact between chain/ belt and roller. –
 small rollers may cause a rattling sound.

Rollers should rotate freely therefore, rollers with rubber cover are recommended.

RBP 505-Series

MCC Sideflexing Belts Engineering

Beltstyle RBP 505

Lay-out guidelines

Guiding Profile

Straight section

RBP 505-series

Beltstyle RBP 505-series

Minimum backflex diameter:30mmMinimum end roller diameter:30mm

Lay-out Guidelines

Minimum straight section drive side
750mm with normal drive, 500mm width gravity tensioner.
Minimum straight inbetween 2 curves (S-bend)
1.5 * beltwidth
Minimum straight section idler side
500mm
Minimum inside radius
2 * beltwidth

MCC guiding Profile RBP 505-series

А

В

С

D

The MCC guiding profile should be used to guide the belt through the curve. Material of the guiding strip is MCC 3500 special polyamide, which offers low friction and high wear resistance.

Codenr. 800.00.01 in length is 2 mtr

Straight section RBP 505-series

Below a cross section drawing is shown with recommended straight section construction

MCC Sideflexing belts Engineering

Curve section RBP 505-series

Sprocket position RBP 505-series

Roller dimension RBP 505-series

Additional notes

RBP 505-Series

Curve section RBP 505-series

Below a cross section drawing is shown with recommended curve construction

Sprocket positions RBP 505-series

Boltwidth	Nr. of sprockets		
Deitwidth	Drive	Idler	
170 mm	4	2	
255 mm	5	3	
340 mm	6	4	
425 mm	7	5	
510 mm	8	6	
595 mm	9	7	
680 mm	10	8	

Roller dimension RBP 505-series

Rollers should rotate freely at all times, therefor we strongly recommend to equip the rollers with bearings.

*) For high loads (>500 N) or wide belts (>510 mm) use bigger shaft diameter and/ or support the shaft in the centre

Additional Notes

- Complete machined UHMPWE curves including curve profiles are available in any anlge and for any belt width.
- Please note that the catenary sag can increase under load. Make sure the belt cannot catch
 against the sideframe in the returpart taking increased catenary into account.

RBP 1255-Series

Beltstyle RBP 1255-series

Minimum backflex diameter:60mmMinimum end roller diameter:60mm

Lay-out Guidelines

Minimum straigth section drive side 750mm with normal drive, 500mm width gravity tensioner.
Minimum straight inbetween 2 curves (S-bend) 1.5 * beltwidth
Minimum straight section idler side 500mm
Minimum inside radius 2 * beltwidth

MCC guiding Profile RBP 1255-series

The MCC guiding profile should be used to guide the belt through the curve. Material of the guiding strip is MCC 3500 special polyamid, which offers low friction and high wear resistance.

Codenr. 800.00.10 in length is 1.8 mtr

Straight section RBP 1255-series

Below a cross section drawing is shown with recommended straight section construction

MCC Sideflexing Belts Engineering

Beltstyle RBP 1255

Lay-out guidelines

Guiding Profile recommendations

Straight section RBP 1255-series

www.rexnordflattop.com

EM-SF-07

MCC Sideflexing belts Engineering

Curve section RBP 1255-series

Sprocket positions RBP 1255-series

Roller dimension

Additional notes

RBP 1255-Series

Curve section RBP 1255-series

Below a cross section drawing is shown with recommended curve construction

Sprocket positions RBP 1255-series

Boltwidth	Nr. of sprockets		
Beitwidth	Drive	Idler	
170 mm	3	2	
255 mm	5	3	
340 mm	6	4	
425 mm	7	5	
510 mm	8	6	
595 mm	9	7	
680 mm	10	8	

Roller dimension RBP 1255-series

Rollers should rotate freely at all times, therefor we strongly recommend to equip the rollers with bearings.

Additional Notes

 Complete machined UHMWPE cruves including curve profiles are available in any angle and for any beltwidth

RB 1255-Series

Beltstyle RB 1255-series

Lay-out Guidelines

А	Minimum straigth section drive side
	750mm with normal drive, 500mm width gravity tensioner.
В	Minimum straight inbetween 2 curves (S-bend)
	1.5*beltwidth
С	Minimum straight section idler side
	500mm
D	Minimum inside radius
	2 * beltwidth

Recommended guiding Profile dimensions for RB 1255-series

The guiding profile should be used to guide the belt through the curve. Recommended material of the guiding strip is MCC 3500 special polyamid, which offers low friction and high wear resistance. UHMWPE can also be used.

Straight section RB 1255-series

Below a cross section drawing is shown with recommended straight section construction

MCC Sideflexing Belts Engineering

Beltstyle RB 1255

Lay-out guidelines

Guiding Profile recommendations

Straight section RB 1255-series

MCC Sideflexing belts Engineering

Curv

Curve section RB 1255-series

> Sprocket positions RB 1255-series

Roller dimension

Additional notes

RB 1255-Series

Curve section RB 1255-series

Below a cross section drawing is shown with recommended curve construction

Sprocket positions RB 1255-series

Boltwidth	Nr. of sprockets		
Beitwidth	Drive	Idler	
170 mm	3	2	
255 mm	5	3	
340 mm	6	4	
425 mm	7	5	
510 mm	8	6	
595 mm	9	7	
680 mm	10	8	

Roller dimension RB 1255-series

Rollers should rotate freely at all times, therefor we strongly recommend to equip the rollers with bearings.

Additional Notes

RBT 1255-Series

Beltstyle RBT 1255-series

Lay-out Guidelines

A	Minimum straigth section drive side
6	
в	Minimum straight inbetween 2 curves (S-bend)
	1.5*beltwidth
С	Minimum straight section idler side
	500mm
D	Minimum inside radius
	2 * beltwidth

Recommended guiding Profile dimensions for RBT 1255-series

The MCC guiding profile should be used to guide the belt through the curve. Material of the guiding strip is MCC 3500 special polyamid, which offers low friction and high wear resistance.

Straight section RBT 1255-series

Below a cross section drawing is shown with recommended straight section construction

*) For the returnpart, also rotating rollers can be used.

MCC Sideflexing Belts Engineering

Beltstyle RBT 1255

Lay-out guidelines

Guiding Profile recommendations

Straight section RBT 1255-series

MCC Sideflexing belts Engineering

Curve section RBT 1255-series

> Sprocket positions RBT <u>1255</u>-series

Roller dimension

Additional notes

RBT 1255-Series

Curve section RBT 1255-series

Below a cross section drawing is shown with recommended curve construction

Sprocket position RBT 1255-series

Boltwidth	Nr. of sprockets		
Beitwidth	Drive	Idler	
170 mm	3	2	
255 mm	5	3	
340 mm	6	4	
425 mm	7	5	
510 mm	8	6	
595 mm	9	7	
680 mm	10	8	

Roller dimension RBT 1255-series

Rollers should rotate freely at all times, therefor we strongly recommend to equip the rollers with bearings.

Additional Notes

 Complete machined UHMWPE cruves including curve profiles are available in any angle and for any beltwidth

RBT 1265-Series

Beltstyle 1265-series

Lay-out Guidelines

А	Minimum straigth section drive side
	750mm with normal drive, 500mm width gravity tensioner.
В	Minimum straight inbetween 2 curves (No S-bend!)
	No minimum straight needed
С	Minimum straight section idler side
	500mm
D	Minimum inside radius
	2 * beltwidth

MCC guiding Profile 1265-series

The MCC guiding profile should be used to guide the belt through the curve. Material of the guiding strip is MCC 3500 special polyamid, which offers low friction and high wear resistance.

Straight section 1265-series

Below a cross section drawing is shown with recommended straight section construction

MCC Sideflexing Belts Engineering

Beltstyle RBT 1265

Lay-out guidelines

Guiding Profile recommendations

Straight section RBT 1265-series

MCC Sideflexing belts Engineering

Curve section RBT 1265-series

> Sprocket positions RBT 1265-series

Roller dimension

Additional notes

RBT 1265-Series

Curve section 1265-series

Below a cross section drawing is shown with recommended curve construction

Sprocket position RBT 1265-series

Boltwidth	Nr. of sprockets		
Deitwidth	Drive	Idler	
170 mm	3	2	
255 mm	4	3	
340 mm	5	4	
425 mm	6	5	
510 mm	7	6	
595 mm	8	7	
680 mm	9	8	

Roller dimension 1265-series

Rollers should rotate freely at all times, therefor we strongly recommend to equip the rollers with bearings.

*) For high loads (>500 N) or wide belts (>510 mm) use bigger shaft diameter and/ or support the shaft in the centre

Additional Notes

 Complete machined UHMWPE cruves including curve profiles are available in any angle and for any beltwidth

RBP 1275-Series

Beltstyle RBP 1275-series

Lay-out Guidelines

A	Minimum straigth section drive side 750mm with normal drive, 500mm width gravity tensioner.			
В	Minimum straight inbetween 2 curves (No S-bend!) No minimum straight needed			o S-bend!)
С	Minimum stra 500mm	ight section ic	ller side	
D	Minimum inside radius (min R)			
	Beltwidth	Min. radius	Beltwidth	Min. radius
	255	300	680	860
	340	400	765	1020
	425	500	850	1200
	510	600	935	1350
	595	720	1020	1500

MCC guiding Profile RBP 1275-series

The MCC guiding profile should be used to guide the belt through the curve. Material of the guiding strip is MCC 3500 special polyamid, which offers low friction and high wear resistance.

Codenr. 800.00.10 in length is 1.8 mtr

Straight section RBP 1275-series

Below a cross section drawing is shown with recommended straight section construction

MCC Sideflexing **Belts** Engineering

Beltstyle RBP 1275

Lay-out guidelines

Guiding Profile recommendations

Straight section **RBP 1275-series**

MCC Sideflexing belts Engineering

Curve section RBP 1275-series

> Sprocket positions RBP 1275-series

Roller dimension

Additional notes

RBP 1275-Series

Curve section RBP 1275-series

Below a cross section drawing is shown with recommended curve construction

Sprocket positions RBP 1275-series

Doltwidth	Nr. of sprockets		
Deitwidth	Drive	Idler	
170 mm	3	2	
255 mm	5	3	
340 mm	6	4	
425 mm	7	5	
510 mm	8	6	
595 mm	9	7	
680 mm	10	8	

Roller dimension RBP 1275-series

Rollers should rotate freely at all times, therefor we strongly recommend to equip the rollers with bearings.

*) For high loads (>500 N) or wide belts (>510 mm) use bigger shaft diameter and/ or support the shaft in the centre

Additional Notes

We recommend to use the MCC machined corner tracks, which allows a simple design and a trouble free operation.

RBT 1275-Series

Beltstyle RBT 1275-series

A	Minimum straigth section drive side 750mm with normal drive, 500mm width gravity tensioner.			
В	Minimum straight inbetween 2 curves (No S-bend!) No minimum straight needed			S-bend!)
С	Minimum stra 500mm	ight section id	ller side	
D	Minimum inside radius (min R)			
	Beltwidth	Min. radius	Beltwidth	Min. radius
	255	300	680	860
	340	400	765	1020
	425	500	850	1200
	510	600	935	1350
	595	720	1020	1500

MCC guiding Profile RBT 1275-series

The MCC guiding profile should be used to guide the belt through the curve. Material of the guiding strip is MCC 3500 special polyamid, which offers low friction and high wear resistance.

Straight section RBT 1275-series

Below a cross section drawing is shown with recommended straight section construction

MCC Sideflexing Belts Engineering

Beltstyle RBT 1275

Lay-out guidelines

Guiding Profile recommendations

Straight section RBT 1275-series

MCC Sideflexing belts Engineering

Curve section RBT 1275-series

> Sprocket positions RBT 1275-series

Roller dimension

Additional notes

RBT 1275-Series

Curve section RBT 1275-series

Below a cross section drawing is shown with recommended curve construction

Sprocket position RBT 1275-series

Poltwidth	Nr. of sprockets		
Deitwidth	Drive	Idler	
170 mm	3	2	
255 mm	5	3	
340 mm	6	4	
425 mm	7	5	
510 mm	8	6	
595 mm	9	7	
680 mm	10	8	

Roller dimension 1275-series

Rollers should rotate freely at all times, therefor we strongly recommend to equip the rollers with bearings.

*) For high loads (>500 N) or wide belts (>510 mm) use bigger shaft diameter and/ or support the shaft in the centre

Additional Notes

RBT 1285-Series

Beltstyle RBT 1285-series

Lay-out Guidelines

A	Minimum straigth section drive side 750mm with normal drive, 500mm width gravity tensioner.			
В	Minimum straight inbetween 2 curves (No S-bend!) No minimum straight needed			o S-bend!)
С	Minimum stra 500mm	ight section ic	ller side	
D	Minimum inside radius (min R)			
	Beltwidth	Min. radius	Beltwidth	Min. radius
	425	500	765	1020
	510	600	850	1200
	595	720	935	1350
	680	860	1020	1500

MCC guiding Profile RBT 1285-series

The MCC guiding profile should be used to guide the belt through the curve. Material of the guiding strip is MCC 3500 special polyamid, which offers low friction and high wear resistance.

Straight section RBT 1285-series

Below a cross section drawing is shown with recommended straight section construction

MCC Sideflexing Belts Engineering

Beltstyle RBT 1285

Lay-out guidelines

Guiding Profile recommendations

Straight section RBT 1285-series

MCC Sideflexing belts Engineering

Curve section RBT 1285-series

> Sprocket positions RBT 1285-series

Roller dimension

Additional notes

RBT 1285-Series

Curve section RBT 1285-series

Below a cross section drawing is shown with recommended curve construction

Sprocket position RBT 1285-series

Boltwidth	Nr. of sprockets		
Beitwidth	Drive	Idler	
170 mm	3	2	
255 mm	4	3	
340 mm	5	4	
425 mm	6	5	
510 mm	7	6	
595 mm	8	7	
680 mm	9	8	

Roller dimension RBT 1285-series

Rollers should rotate freely at all times, therefor we strongly recommend to equip the rollers with bearings.

Additional Notes

 Complete machined UHMWPE cruves including curve profiles are available in any angle and for any beltwidth

Sideflexing Belts

Installation instructions

505-series

Turn screwdriver counter clockwise to remove clip.

Place screwdriver between clip and belt end.

Please note that 505-series belts have a specific running direction, indicated by the arrow at the bottom.

1255-series belt

Lift belt out of tracks, and position belt on the lugs. Now, push one belt module downwards.

Place screwdriver in opposite end hole and push pin out.

1265-series belt

Turn screwdriver counter clockwise to open clip.

Place screwdriver in opposite end hole and push pin out.

MCC Sideflexing Belts Engineering

Installation instructions

505-series

1255-series

1265-series

MCC Sideflexing belts Engineering

Installation instructions

1275-series

1285-series

Sideflexing Belts

1275-series belt

Lift belt out of tracks. Now, push one inner belt module downwards.

1285-series belt

Turn screwdriver counter clockwise to open clip.

Place screwdriver in opposite end hole and push pin out.

Place screwdriver in opposite end hole and push pin out.